AMS 241: Bayesian Nonparametric Methods (Spring 2018)

Homework set on Dirichlet processes: prior properties and simulation (due Tuesday April 24)

1. Assume a Dirichlet process (DP) prior, $DP(\alpha, G_0)$, for distributions G on \mathcal{X} . Show that for any specified (measurable) disjoint subsets B_1 and B_2 of \mathcal{X} , $Corr(G(B_1), G(B_2))$ is negative. Is the negative correlation for random probabilities induced by the DP prior a restriction? Discuss.

2. Simulation of Dirichlet process prior realizations

Consider a DP(α, G_0) prior over the space of distributions (equivalently c.d.f.s) G on \mathbb{R} , with $G_0 = N(0, 1)$.

- (a) Use both Ferguson's original definition and Sethuraman's constructive definition to generate (multiple) prior c.d.f. realizations from the $DP(\alpha, N(0, 1))$, for different values of α ranging from *small* to *large*.
- (b) In addition to prior c.d.f. realizations, obtain, for each value of α, the corresponding prior distribution for the mean functional μ(G) = ∫ t dG(t) and for the variance functional σ²(G) = ∫ t² dG(t) {∫ t dG(t)}².
 (Note that, because G₀ has finite first and second moments, both of the random variables μ(G) and σ²(G) take finite values almost surely. The third problem asks you to prove this result for the mean functional.)
- (c) Finally, consider simulation under a mixture of DPs (MDP) prior, which extends the DP above by adding a gamma prior for α . Therefore, the MDP prior for G is defined such that, given α , $G \mid \alpha \sim DP(\alpha, N(0, 1))$. To simulate from the MDP, you can use either of the DP definitions given draws for α from its prior. You can work with 2-3 different gamma priors for α .

3. (Optional) Assume a DP prior, $DP(\alpha, G_0)$, for distributions G on \mathbb{R} , such that G_0 has finite mean, that is, $\mu(G_0) = \int t \, dG_0(t) < \infty$. Use the DP constructive definition to show that the random variable $\mu(G) = \int t \, dG(t)$ is almost surely finite. Moreover, show that $E(\mu(G)) = \mu(G_0)$.

(**Hint.** Check absolute convergence working with random variable $\mu^*(G) = \int |t| \, dG(t)$, and recall that if an \mathbb{R}^+ -valued random variable has finite mean, then it is almost surely finite. The monotone convergence theorem is the main tool needed for the proof.)