
AMS 241: Bayesian Nonparametric Methods (Spring 2018)

Homework set on Dirichlet process mixture models
(due Tuesday May 22)

1. Consider the location normal Dirichlet process (DP) mixture model

f(y | G, φ) =

∫
kN(y | θ, φ) dG(θ), G | α, µ, τ 2 ∼ DP(α,G0 = N(µ, τ 2)),

where kN(· | θ, φ) denotes the density function of a normal distribution with mean θ
and variance φ. Assume an inv-gamma(aφ, bφ) prior for φ, a gamma(aα, bα) prior for
α, and take N(aµ, bµ) and inv-gamma(aτ2 , bτ2) priors for the mean, µ, and variance, τ 2,
respectively, of the normal centering distribution G0. (Here, inv-gamma(a, b) denotes
the inverse gamma distribution with mean b/(a − 1), provided a > 1, and gamma(a, b)
denotes the gamma distribution with mean a/b.) Therefore, the hierarchical version of
this semiparametric DP mixture model is given by

yi | θi, φ
ind.∼ kN(yi | θi, φ), i = 1, ..., n

θi | G
i.i.d.∼ G, i = 1, ..., n

G | α, µ, τ 2 ∼ DP(α,G0 = N(µ, τ 2))
α, µ, τ 2, φ ∼ p(α)p(µ)p(τ 2)p(φ),

with the (independent) priors p(α), p(µ), p(τ 2), p(φ) for α, µ, τ 2, φ given above.

To study inference under this model, consider the data available from

https://ams241-spring18-01.courses.soe.ucsc.edu/homework-assignments

This is a synthetic data set based on n = 250 responses generated from the mixture
0.2 N(−5, 1) + 0.5 N(0, 1) + 0.3 N(3.5, 1).

(1) Obtain the required expressions for the Pólya urn based Gibbs sampler, which can
be used for posterior simulation from p(θ, α, φ, µ, τ 2 | data), where θ = (θ1, ..., θn), and
data = {yi : i = 1, ..., n}.

(2) Discuss specification of the prior hyperparameters for φ, µ, and τ 2. Study sensitivity
of posterior inference for φ, µ, and τ 2 to the prior choice. In addition to the posterior dis-
tributions for φ, µ, τ 2, examine sensitivity of posterior predictive inference (see (5) below).

(3) Obtain the posterior distributions for α and n∗ under different prior choices for α
corresponding to an increasing number of distinct mixture components. For example, you
can consider aα = 2, bα = 15 (E(n∗) ≈ 1), aα = 2, bα = 4 (E(n∗) ≈ 3), aα = 2, bα = 0.9
(E(n∗) ≈ 10) and aα = 2, bα = 0.1 (E(n∗) ≈ 48). Discuss prior sensitivity analysis results
for α and n∗, as well as for posterior predictive inference (again, see (5) below).



(4) Illustrate the clustering induced by this DP mixture model using the posterior samples
for the θi. For example, you can plot the median and two quantiles from p(θi | data), for
i = 1, ..., n. You can also obtain p(θ0 | data) =

∫
p(θ0 | θ, α, µ, τ 2)p(θ, α, µ, τ 2 | data),

that is, the posterior predictive density for θ0 (associated with a new observation y0).

(5) Obtain the posterior predictive density p(y0 | data) and use it to study how successful
the model is in capturing the distributional shape suggested by the data. Compare also
with the prior predictive density.

2. Consider the more general location-scale normal DP mixture model

f(y | G) =

∫
kN(y | θ, φ) dG(θ, φ), G | α,ψ ∼ DP(α,G0(ψ)),

with the conjugate normal/inverse-gamma specification for the centering distribution

G0(θ, φ | ψ) = N(θ | µ, φ/κ)× inv-gamma(φ | c, β)

for fixed c and random ψ = (µ, κ, β).

Use the function DPdensity from the DPpackage to fit this model to the same data
set with problem 1. Discuss prior specification for the hyperparameters µ, κ and β. Use
appropriate types of inference to compare the performance of the location-scale normal
DP mixture above with the location normal DP mixture model from problem 1.


