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Stochastic processes: basic concepts and definitions

Consider a probability space (Ω,F , P ), where Ω is the sample space of the experiment, an
index set T , and a state space S. A stochastic process is a collection

X = {X(ω, t) : ω ∈ Ω, t ∈ T}

such that:
(1) For any n and any set of index points ti ∈ T , i = 1,...,n, (Xt1 , ..., Xtn) is an n-dimensional
random variable (random vector) defined on the probability space (Ω,F , P ) and taking values
in Sn ≡ S × ...× S. (Hence, for each fixed ti ∈ T , Xti(·) ≡ X(·, ti) : (Ω,F , P )→ S is a random
variable.)
(2) For any fixed ω ∈ Ω, Xω(·) ≡ X(ω, ·) : T → S is a function defined on T and taking values
in S, referred to as a sample (or sample path or realization) of the stochastic process X .

Conditions (1) and (2) indicate that a stochastic process X can be viewed either as a col-
lection of random variables {Xt : t ∈ T} or as a collection of random functions {Xω : ω ∈ Ω}.

Depending on the nature of T and S, we can have discrete-time or continuous-time stochas-
tic processes (countable or uncountable T , respectively) and discrete-state or continuous-state
stochastic processes (countable or uncountable S, respectively). For the details below, assume
that S is a (countable or uncountable) subset of Rd, d ≥ 1.

Conditions (1) and (2) also indicate that for the study of a stochastic process both distri-
butional properties and properties of sample paths are important. With regard to the former,
the distribution function of the random vector (Xt1 , ..., Xtn),

Ft(x1, ..., xn) = Pr(Xt1 ≤ x1, ..., Xtn ≤ xn),

contains all the information for the specific index points t = (t1, ..., tn). The collection of all
these distribution functions Ft, as t ranges over all possible vectors of index points of any (finite)
length n, is the set of finite-dimensional distributions (f.d.d.s) of the stochastic process X .

The Kolmogorov consistency conditions ensure existence of a stochastic process associ-
ated with a set of f.d.d.s. Formally, assume that for each (finite) n and for each set of index
points t = (t1, ..., tn) (in some index set T ), we define a distribution function Ft. If the collection
of all such distribution functions satisfies the Kolmogorov consistency conditions:
(a) F(t1,...,tn,tn+1)(x1, ..., xn, xn+1) → F(t1,...,tn)(x1, ..., xn) as xn+1 →∞, and
(b) For all n, x = (x1, ..., xn), t = (t1, ..., tn), and any permutation π = (π(1), ..., π(n)) of
{1, 2, ..., n}, Fπt(πx) = Ft(x), where πx = (xπ(1), ...., xπ(n)) and πt = (tπ(1), ...., tπ(n)),
then there exists a probability space (Ω,F , P ) and a collection X = {Xt : t ∈ T} of random
variables, defined on (Ω,F , P ), such that the set of Ft is the set of f.d.d.s of X .



It is important to note that f.d.d.s do not characterize a stochastic process, that is, they do
not always yield complete information about properties of sample paths. It is possible to have
two (or more) stochastic processes with the same set of f.d.d.s but with different sample paths.
Such processes are called versions of one another. (Under conditions on the stochastic process
X , it can be shown that there exists a version Y of X with some specific property satisfied by
its sample paths, e.g., right-continuity or differentiability.)

Using the information provided by the set of f.d.d.s, we can define several useful functions for a
stochastic process X . (For all the definitions below, we assume that the required expectations
exist.) For any t ∈ T , the mean function of X is

µ(t) ≡ E(Xt) =

∫
x dFt(x).

For any ti, tj ∈ T , the covariance function is given by

c(ti, tj) ≡ Cov(Xti , Xtj ) = E(XtiXtj )− µ(ti)µ(tj)

and the correlation function by

r(ti, tj) ≡ Corr(Xti , Xtj ) =
Cov(Xti , Xtj )√

Var(Xti)Var(Xtj )
,

provided Var(Xti) > 0 and Var(Xtj ) > 0. An important property of the covariance function is

that it is a non-negative definite function, that is,
∑k

i=1

∑k
j=1 zizjc(ti, tj) ≥ 0, for all (finite) k

and for any t1,...,tk ∈ T and real constants z1,...,zk.

If c(ti, tj) = 0, for all ti, tj with ti 6= tj , then the stochastic process X is typically called a
white noise process. (If Xti and Xtj are independent for all ti, tj with ti 6= tj , X is sometimes
called a strictly white noise process.) We say that X is a stochastic process with uncorrelated
(orthogonal) increments if for any ti < tj < tk < tl ∈ T , Cov(Xtj − Xti , Xtl − Xtk) = 0
(E((Xtj −Xti)(Xtl −Xtk)) = 0). The process X has independent increments if for any ti <
tj < tk < tl ∈ T , Xtj −Xti and Xtl −Xtk are independent.

Theory and methods for stochastic processes are considerably simplified under the assumption
of (strong or weak) stationarity, that imposes certain structure on the set of f.d.d.s (strong
stationarity) or the mean function and the covariance function (weak stationarity). Stationarity
also has deeper consequences, including spectral representations and ergodic theory.

A stochastic process X is strongly (or strictly) stationary if its f.d.d.s are invariant un-
der time shifts, that is, for any (finite) n, for any t0 and for all t1, ..., tn ∈ T , (Xt1 , ..., Xtn) and
(Xt1+t0 , ..., Xtn+t0) have the same distribution (and, as a result, Ft = Ft+t0 , where t = (t1, ..., tn)
and t + t0 = (t1 + t0, ..., tn + t0)). A stochastic process X is weakly stationary if its mean
function is constant and its covariance function is invariant under time shifts. That is, for all
t ∈ T , E(Xt) = µ, and for all ti, tj ∈ T , Cov(Xti , Xtj ) = c(ti − tj), a function of ti − tj only.


